MathExcel Supplemental Worksheet A: Functions and Inverse Functions

1. Find the domain of $f(x)=\sqrt{\frac{3 x}{x^{2}+x-12}}$
2. Find all values of c such that $h(x)=\frac{x+3}{x^{2}+2 c x+4}$ has domain \mathbb{R}.
3. Suppose the graph of $f(x)=x^{3}$ is shifted down 8 units and to the left 2 units. What is the equation of the new graph?
4. Write an equation of the line parallel to $3 x-5 y=1$ which passes through the origin.
5. Find the point(s) of intersection of the line $y=2 x+2$ and the parabola given by $p(x)=x^{2}+3 x-4$. Sketch a graph to illustrate your answer.
6. Determine if the following functions are even, odd, both, or neither. Explain.
(a) $f(x)=x^{3}$.
(b) $g(x)=x^{4}$.
(c) $h(x)=5$.
(d) $k(x)=0$.
7. If $f(x)$ is odd and $f^{-1}(x)$ exists, show that $f^{-1}(x)$ is odd.
8. Use completing the square to find the roots of $f(x)=4 x^{2}+x-3$.
9. Show by completing the square that $f(x)=x^{2}+b x+c$ is a translation of the function $R(x)=x^{2}$. By how many units has it been shifted horizontally? Vertically?
10. Let $f(x)=\sqrt{4 x^{2}-4}$.
(a) Explain why $f(x)$ is not a one-to-one function.
(b) State a domain in which the given function is one-to-one.
(c) In the domain from part (b), find $f^{-1}(x)$.
11. You are in a boat 2 miles from the nearest point on the coast. You are to go to a point Q located 3 miles down the coast and 1 mile inland (see figure). You can row at 2 miles per hour and walk at 4 miles per hour. Express the total time T of the trip as a function of x.

3 mi .
12. Use the Pythagorean theorem to determine the distance between points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=$ $\left(x_{2}, y_{2}\right)$. Sketch a picture.
13. Consider the following triangle.

(a) Write down the Pythagorean Theorem as it pertains to this triangle.
(b) In terms of the variables in the image, what is $\sin (\theta)$? What is $\cos (\theta)$?
(c) In terms of the variables in the image, write down $\sin ^{2}(\theta)+\cos ^{2}(\theta)$ and simplify.
(d) Use part (c) to find an identity between $\tan (\theta)$ and $\sec (\theta)$.
(e) Use part (c) to find an identity between $\cot (\theta)$ and $\csc (\theta)$.
14. Find the domain and range of $f(\theta)=\tan (\theta)$. Is this an invertible function? Why?
15. Given the function $y=\ln \left(a x^{2}+2 x+1\right)$.
(a) Find all real numbers a such that the domain of the function is \mathbb{R}.
(b) Find all real numbers a such that the range of the function is \mathbb{R}.
16. Which of the following equations are false? If the equation is false change it so that it becomes a true logarithmic identity.
(a) $\log _{a}(x)+\log _{a}(y)=\log _{a}(x+y)$
(b) $\frac{\log _{a}(x)}{\log _{a}(y)}=\log _{a}(x-y)$
(c) $b \log _{a}(x)+b \log _{a}(y)=\log _{a}\left((x y)^{b}\right)$
(d) $\log _{a}(x) \log _{a}(y)=\log _{a}(x y)$

